Lecture 1

Why we study probability and random processes


Basic Set Theory

Relationships

Subsets

$$S \in T$$

Equality

If every element of the set $S$ is also an element of set $T$, we say $S$ is a "subset of $T$"

If $S \subset T$ and $T \subset S$, then $S = T$.

Universal Set $\Omega$

The set of all objects in the particular context.

Complement

The set of all elements of $\Omega$ that do not belong to $S$

can be written as $S^{C}$ or $S^\prime$

Union

The set of all elements that belong to $S$ or $T$

Intersection

The set of all elements that belong to both $S$ and $T$

Algebraic Properties

Commutative

$$ S \cup T = T \cup S $$

$$ S \cap T = T \cap S $$

Associative

$$ S \cup (T \cup W) = (S \cup T) \cup W $$

$$ S \cap (T \cap W) = (S \cap T) \cap W $$

Distributive

$$ S\cup \left( T\cap W \right) =\left( S\cup T \right) \cap \left( S\cup W \right) $$

$$ S\cap \left( T\cap W \right) =(S\cap T)\cup(S\cap W) $$

De Morgan's Laws

$$ (S\cap T)^\prime=S^\prime \cup T^\prime $$

$$ (S\cup T)^\prime=S^\prime\cap T^\prime $$